New Optimality Conditions for the Semivectorial Bilevel Optimization Problem New Optimality Conditions for the Semivectorial Bilevel Optimization Problem Herstellung: Medienzentrum Der Tu Bergakademie Freiberg New Optimality Conditions for the Semivectorial Bilevel Optimization Problem

نویسندگان

  • Stephan Dempe
  • Nazih Gadhi
  • Alain B. Zemkoho
  • ALAIN B. ZEMKOHO
چکیده

The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary optimality conditions are then derived in the smooth and nonsmooth settings while using the generalized differentiation calculus of Mordukhovich. Our approach is different from the one previously used in the literature and the conditions obtained are new and furthermore, they reduce to those of a usual bilevel program if the lower-level objective function becomes single-valued.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming Sensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming Herstellung: Medienzentrum Der Tu Bergakademie Freiberg Sensitivity Analysis for Two-level Value Functions with Applications to Bilevel Programming

This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization spread under the name of the optimistic bilevel problem and its initial more difficult formulation that we call here the original optimistic bilevel optimization problem. It follows from this research that, although the process of deriving necessary optimality condition...

متن کامل

New Optimality Conditions for the Semivectorial Bilevel Optimization Problem

The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary ...

متن کامل

Semivectorial Bilevel Optimization on Riemannian Manifolds

In this paper we deal with the semivectorial bilevel problem in the Riemannian setting. The upper level is a scalar optimization problem to be solved by the leader, and the lower level is a multiobjective optimization problem to be solved by several followers acting in a cooperative way inside the greatest coalition and choosing among Pareto solutions with respect to a given ordering cone. For ...

متن کامل

Voltage Stability Constrained OPF Using A Bilevel Programming Technique

This paper presents a voltage stability constrained optimal power flow that is expressed via a bilevel programming framework. The inner objective function is dedicated for maximizing voltage stability margin while the outer objective function is focused on minimization of total production cost of thermal units. The original two stage problem is converted to a single level optimization problem v...

متن کامل

Necessary Optimality Conditions for Multiobjective Bilevel Programs

The multiobjective bilevel program is a sequence of two optimization problems, with the upper-level problem being multiobjective and the constraint region of the upper level problem being determined implicitly by the solution set to the lower-level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of all lower-level problems near...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011